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Regioselective Suzuki cross-coupling reactions
of 2,3,4,5-tetrabromo-1-methylpyrrole
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Abstract

Regioselective Suzuki cross-coupling reactions of 2,3,4,5-tetrabromo-1-methylpyrrole allow a convenient synthesis of functionalized
pyrroles.
� 2008 Elsevier Ltd. All rights reserved.

Keywords: Heterocycles; Pyrroles; Regioselectivity; Suzuki reactions
Pyrroles are of considerable pharmacological relevance.
They occur in a number of synthetic drugs (e.g., zomepirac
and atorvastatin) and natural products (e.g., in the tetra-
pyrrole pigments porphobilinogen and bilirubin).1–3 Oligo-
pyrroles proved to be important as organic materials
(e.g., as synthetic metals).4 Heterocycles have been widely
functionalized by palladium(0)-catalyzed cross-coupling
reactions.5 In recent years, it has been shown that poly-
halogenated heterocycles may be regioselectively function-
alized in such reactions by selective activation of a single
halogen atom—a process which is controlled by electronic
and steric parameters.6 Recently, we reported the synthesis
of tetraarylthiophenes based on regioselective Suzuki reac-
tions of tetrabromothiophene.7 Despite their potential syn-
thetic utility, regioselective functionalization reactions of
polyhalogenated pyrroles have only scarcely been reported
to date. Bach and Schröter recently reported regioselective
Suzuki reactions of ethyl 2,3,4-tribromopyrrole-5-carbox-
ylate and of 2,3-dibromo-5-nitropyrrole.8 Herein, we
disclose our preliminary results related to Suzuki cross-
coupling reactions of 2,3,4,5-tetrabromo-1-methylpyrrole.
Palladium(0)-catalyzed cross-coupling reactions of tetra-
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halopyrroles have, to the best of our knowledge, not been
reported to date. In general, reactions of tetrahalogenated
pyrroles are rather rare, which can be explained by the
unstable nature of these compounds.9

2,3,4,5-Tetrabromo-1-methylpyrrole (1) was prepared
by NBS-mediated bromination of N-methylpyrrole. The
published procedure10 for the synthesis of 1 was modi-
fied,11 as we were not able to isolate the pure product by
the original protocol. The reaction was carried out at
�78 �C for 8 h. It proved to be helpful for the separation
of succinimide to add heptane to the reaction mixture,
which results in the precipitation of succinimide and of
side-products. The yellowish crude product was purified
by repeated washing with cold ethyl acetate to give the pure
material in the form of colourless crystals. Noteworthy,
impure product fails to undergo the desired Suzuki reac-
tions and also more rapidly decomposes. The solid can
be stored under argon at �18 �C for a few weeks. After a
few weeks, the compound starts to become slightly yellow
and the quality is not sufficient anymore for Suzuki
reactions.

The Suzuki reaction of 1 with various boronic acids
(1.1 equiv) afforded 5-aryl-2,3,4-tribromopyrroles 2a–f in
good yields and with very good regioselectivity (Scheme 1,
Table 1). During the optimization, it proved to be
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Scheme 2. Synthesis of 2,5-diaryl-3,4-dibromopyrroles 4a–f and of
tetraarylpyrroles 5a,b and 6a,b. Reagents and conditions: (i) 1 (1.0 equiv),
Ar1B(OH)2 (2.5 equiv), Pd(PPh3)4 (6–10 mol %), K3PO4 (4.0 equiv), sol-
vent (see Table 2), 90 �C, 12 h; (ii) 4c (1.0 equiv), Ar2B(OH)2 (3.0 equiv),
Pd(PPh3)4 (20 mol %), K3PO4 (4.0 equiv), DMF/toluene/EtOH/H2O
(4:1:1:1), reflux, (6a: 48 h, 6b: 96 h); (iii) 1 (1.0 equiv), ArB(OH)2

(5.0 equiv), Pd(PPh3)4 (20 mol %), K3PO4 (5.0 equiv), DMF/toluene/
EtOH/H2O (4:1:1:1), reflux, 96 h.

Table 2
Synthesis of 4a–f

4 Ar1 Solvent Yielda (%)

a 3-ClC6H4 Toluene/H2O (5:1) 57
b 4-EtC6H4 Toluene/H2O (5:1) 52
c 4-MeC6H4 Toluene/H2O (5:1) 79
d 4-ClC6H4 1,4-Dioxane/H2O (5:1) 67
e 4-(MeO)C6H4 1,4-Dioxane/H2O (5:1) 79
f Thien-2-yl Toluene/MeOH/H2O (2:2:1) 50

a Yields of isolated products.
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Scheme 1. Synthesis of 5-aryl-2,3,4-tribromopyrroles 2a–f and of 2,5-
diaryl-3,4-dibromopyrroles 3a,b. Reagents and conditions: (i) 1

(1.0 equiv), Ar1B(OH)2 (1.1 equiv), Pd(PPh3)4 (6 mol %), K3PO4

(4.0 equiv), solvent (see Table 1), 90 �C, 12 h; (ii) 2c (1.0 equiv),
Ar2B(OH)2 (1.1 equiv), Pd(PPh3)4 (10 mol %), K3PO4 (4.0 equiv), DMF/
toluene/EtOH/H2O (4:1:1:1), reflux, 48 h.

Table 1
Synthesis of 2a–f

2 Ar Solventa Yieldb (%)

a 3-PhC6H4 Toluene/H2O 66
b 3-ClC6H4 Toluene/H2O 71
c 4-EtC6H4 Toluene/H2O 75
d 2-(MeO)C6H4 1,4-Dioxane/H2O 70
e 4-MeC6H4 1,4-Dioxane/H2O 81
f 3,5-Me2C6H3 1,4-Dioxane/H2O 72

a Solvent/H2O = 4:1.
b Yields of isolated products.

Fig. 1. ORTEP plot of 4b (50% probability level).
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important to suppress the formation of 2,5-diaryl-3,4-di-
bromopyrroles, as their separation from the desired prod-
ucts proved to be difficult and tedious. The stoichiometry,
temperature, solvent and the presence of water proved to
play an important role in terms of yield (Table 1). Note-
worthy, the employment of benzyl-, carbamate- and
sulfonyl-protected pyrroles was unsuccessful (decomposi-
tion). The reaction of 2e with 1.1 equiv of (3-chlorophenyl)-
and (4-methoxyphenyl)boronic acid resulted in regioselec-
tive formation of 2,5-diaryl-3,4-dibromopyrroles 3a and
3b, respectively (Scheme 1).

The Suzuki reaction of 1 with 2.5 equiv of various aryl-
boronic acids afforded 2,5-diaryl-3,4-dibromopyrroles 4a–f

in good yields and with very good regioselectivity (Scheme
2, Table 2).12 The solvent proved again to be a very impor-
tant parameter during the optimization of the yield. The
reaction of 4c with (4-methoxyphenyl)- and (3,5-dimethyl-
phenyl)boronic acid gave tetraarylpyrroles 6a and 6b,
respectively, containing two different types of aryl groups.
Tetraarylpyrroles 5a,b, containing four identical aryl
groups, were prepared by reaction of 1 with (4-ethylphe-
nyl)- and (3-chlorophenyl)boronic acid (5.0 equiv). The
best yields of 5a,b and 6a,b were obtained when the reac-
tions were carried out using a quaternary solvent mixture
(DMF/toluene/EtOH/H2O = 4:1:1:1) and an increased
amount of catalyst and reagents and when the reaction
time was extended. Considerable amounts of 2,3,5-triaryl-
4-bromopyrroles were formed when the amounts of
reagents and catalyst were too low. Noteworthy, the bro-
mide groups of 2,5-diaryl-3,4-dibromopyrroles 4a–f proved
to be considerably less reactive than those of 2,5-diaryl-3,4-
dibromothiophenes.7 This must be explained by electronic
reasons, as the steric hindrance is similar for both types of
substrates. The conditions developed for the synthesis of
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5a,b and 6a,b could be successfully applied to the synthesis
of related tetraarylpyrroles.

All products were characterized by spectroscopic meth-
ods. The structure of 4b was independently confirmed by
X-ray crystal structure analysis (Fig. 1).13

In conclusion, we have reported a new strategy for
the synthesis of 5-aryl-2,3,4-tribromopyrroles, 2,5-diaryl-
3,4-dibromopyrroles and tetraarylpyrroles based on
regioselective Suzuki cross-coupling reactions of N-
methyltetrabromopyrrole.
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